Inequality with infinite sum generated by decreasing positive sequences. Problem proposed by Arkady Alt, San Jose, California, USA.

Let D_1 be set of strictly decreasing sequences of positive real numbers with first term equal to 1. For any $\mathbf{x}_{\mathbb{N}} := (x_1, x_2, \dots, x_n, \dots) \in D_1$ prove that

$$\sum_{n=1}^{\infty} \frac{x_n^3}{x_n + 4x_{n+1}} \ge \frac{4}{9}$$

and find the sequence for which equality occurs.

Solution.

Let $S(\mathbf{x}_{\mathbb{N}}) = \sum_{n=1}^{\infty} \frac{x_n^3}{x_n + 4x_{n+1}}$ if series converges and $S_f(x_{\mathbb{N}}) = \infty$ if it diverges.

Let $\widetilde{D}_1 = \{x_{\mathbb{N}} \mid x_{\mathbb{N}} \in D_1 \text{ and } S(x_{\mathbb{N}}) \neq \infty \}$. Since \widetilde{D}_1 isn't empty (because for

for instance if $x_n = q^{n-1}, n \in \mathbb{N}$, where $q \in (0,1)$, we have $\sum_{n=1}^{\infty} \frac{x_n^3}{x_n + 4x_{n+1}} =$

$$\sum_{n=1}^{\infty} \frac{q^{3(n-1)}}{q^{n-1} + 4q^n} = \sum_{n=1}^{\infty} \frac{q^{2(n-1)}}{1 + 4q} = \frac{1}{(1 + 4q)(1 - q^2)} \text{ then } \inf\{S(\mathbf{x}_{\mathbb{N}}) \mid \mathbf{x}_{\mathbb{N}} \in D_1\} = \inf\{S(\mathbf{x}_{\mathbb{N}}) \mid \mathbf{x}_{\mathbb{N}} \in \widetilde{D}_1\}.$$

Let $S:=\inf \left\{S(\mathbf{x}_{\mathbb{N}}) \mid \mathbf{x}_{\mathbb{N}} \in \widetilde{D}_1\right\}$. For any $\mathbf{x}_{\mathbb{N}} \in \widetilde{D}_1$ we have $S(\mathbf{x}_{\mathbb{N}}) = \sum_{n=1}^{\infty} \frac{x_n^3}{x_n + 4x_{n+1}} = \sum_{n=1}^{\infty} \frac{x_n^3}{x_n} = \sum_{n=1}^{\infty} \frac{x_n^3$

$$\frac{1}{1+4x_2} + \sum_{n=2}^{\infty} \frac{x_n^3}{x_n + 4x_{n+1}} = \frac{1}{1+4x_2} + x_2^2 \sum_{n=1}^{\infty} \frac{y_n^3}{y_n + 4y_{n+1}} = \frac{1}{1+4x_2} + x_2^2 S(\mathbf{y}_{\mathbb{N}}), \text{ where } y_n := \frac{x_{n+1}}{x_2}, n \in \mathbb{N}.$$

Since $\mathbf{y}_{\mathbb{N}} \in \widetilde{D}_1$ ($1 = y_1 > y_2 > \dots > y_n > \dots$ and $S(\mathbf{y}_{\mathbb{N}}) = \frac{S(\mathbf{x}_{\mathbb{N}})}{x_2^2} - \frac{1}{1 + 4x_2}$) then

$$S(\mathbf{y}_{\mathbb{N}}) \geq S$$
 and, therefore, $S(\mathbf{x}_{\mathbb{N}}) \geq \frac{1}{1+4x_2} + x_2^2 S \Rightarrow S \geq \frac{1}{1+4x_2} + x_2^2 S \Leftrightarrow S \geq \frac{1}{1+4x_2} + x_2$

$$S \geq \frac{1}{(1+4x_2)(1-x_2^2)}.$$

We will find $\mu := \max_{x \in (0,1)} h(x)$, where $h(x) := (1+4x)(1-x^2) = -4x^3 - x^2 + 4x + 1$.

Since
$$h'(x) = -12x^2 - 2x + 4 = -2(3x + 2)(2x - 1)$$
 then

$$\mu = \max_{x \in (0,1)} h(x) = h\left(\frac{1}{2}\right) = \frac{9}{4}$$
 and, therefore, $S(\mathbf{x}_{\mathbb{N}}) \ge \frac{1}{\mu} = \frac{4}{9}$.

Since $S(\mathbf{x}_{\mathbb{N}}) = \frac{1}{(1+4q)(1-q^2)}$ for $x_n = q^{n-1}, n \in \mathbb{N}, q \in (0,1)$, then for $q = \frac{1}{2}$

we obtain
$$\sum_{n=1}^{\infty} \frac{x_n^3}{x_n + 4x_{n+1}} = \frac{1}{\left(1 + 4 \cdot \frac{1}{2}\right) \left(1 - \left(\frac{1}{2}\right)^2\right)} = \frac{4}{9}.$$